
-AiSI 894 ADA (TRADENNAME) COMPILER VALIDATION SUMMARY REPORT 1/1
INTERMETRICS INC 1750 (U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER N-P AF8 ON ADA VALI 29 OCT 86

UNCLASSIFIED F/G 1 2/5 N L

EEEEsonEOlsI
EIEIIIEEEEEIIEIl..'I..onIII
IIlllOM

11111_!2

MICROCOPY RESOLUTION TEST CHART
NATIONAL UREtAU OF STAN 0) -3 -

- .-. . . . : .e . . •• , . .

. UNCLASSIFIED FIL
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE EARUCO NS

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtide) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: 29 OCT 1986 to 29 OCT 1987
Intermetrics, Inc. 1750A Ada Real-Time
Compiler, Version 201.16c, VAX-11/785 Host, 6. PERFORMING ORG. REPORT NUMBER
ECSPO SIM50A, Relaease Ro304-4.000 Target
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AVF-WPAFB, Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

it. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 29 OCT 1986
United States Department of Defense J. NUMBER UF PAGS
Washington, DC 20301-3081 43

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS (of this report)
Wright-Patterson UNCLASSIFIED

15a. RgFICATION/DOWNGRADING

_ _N/A

00 16. DISTRIBUTION STATEMENT (ofthisReport)

__ Approved for public release; distribution unlimited.

00

i 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)•:, DTlC
UNCLASSIFIED A]< ELECTE

%hJUL 0 6 1987
18. SUPPLEMENTARY NOTES -i

A

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Progra. Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DD 10u 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

EXECUTIVE SUMMARY

This Validation Sumary Report (VSR) summarizes the results and conclusions
of validation testing performed on the 1750A Ada Real-Time Compiler,
Version 201.16c, using Version 1.8 of the Ada ® Compiler Validation
Capability (ACVC). The 1750A Ada Real-Time Compiler is hosted on a
VAX-11/785 operating under VMS, Version 4.2. Programs processed by this
compiler may be executed on an ECSPO SI50A, Release R0304-4.O00 having no
operating system. The ECSPO SIM5OA simulates a MIL-STD-1750A Instruction
Set Architecture with console I/O and no other optional features.

On-site testing was performed 24 October 1986 through 29 October 1986 at
Cambridge MA, under the direction of the Ada Validation Facility (AVF),
according to Ada Validation Organization (AVO) policies and procedures.
The AVF identified 1945 of the 2399 tests in ACVC Version 1.8 to be
processed during on-site testing of the compiler. The 19 tests withdrawn
at the time of validation testing were not processed; the 278 Class C tests
that make use of floating-point precision exceeding that supported by the
implementation were not processed; and 157 Class C tests that require the
creation of external files were not processed. After the 1945 tests were
processed, results for Class A, C, D, or E tests were examined for correct
exmcution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 33 of the processed tests determined to be inapplicable. The
remaining 1912 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
42_ 5 6 I8_ 2 _10 11 12 14

Passed 93 204 280 235 159 97 134 262 128 32 218 70 1912

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 121 110 12 2 0 5 0 2 0 0 163 468

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 217 161 98 110 26 13 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

i

AdaP Compiler Validation Summary Report:

Compiler Name: 1750A Ada Real-Time Compiler, Version 201.16c

Host: Target:
VAX-11/785 under ECSPO SIM50A,
VHS, Version 41.2 Release R0304-41.000

Testing Completed 29 October 1986 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validition Facility
Georgeanne Chitwood
AS/IL
Wright-Patterson AFB OH 415433-6503

a al da io Or an za ioAc l cession For t- .

Dr. John F. Kramer TSG j
Institute for Defense Analyses DI A
Alexandria VA n!1ucd

Ada Mint Program Office Availability co~evj
Virginia L. Castor ~i.aoo
Director Dist Special
Department of DefenseF ydi
Washington DC

9Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

AVF Control Number: AVF-VSR-49.1286

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Intermetrics, Inc.
1750A Ada Real-Time Compiler, Version 201.16c

VAX-11/785 Host, ECSPO SIM5OA, Release R0304-4.000 Target

Completion of On-Site Testing:
29 October 1986

Prepared By:
Ada Validation Facility

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

+ Place NTIS form here +.

..........

EXECUTIVE SUMIARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the 1750A Ada Real-Time Compiler,
Version 201.16o, using Version 1.8 of the Ada ® Compiler Validation
Capability (ACVC). The 1750A Ada Real-Time Compiler is hosted on a
VAX-11/785 operating under VMS, Version 4.2. Programs processed by this
compiler may be exeouted on an ECSPO SIM5OA, Release R0304-4.O00 having no
operating system. The ECSPO SIM5OA simulates a MIL-STD-1750A Instruction
Set Architecture with console I/O and no other optional features.

On-site testing was performed 24 October 1986 through 29 October 1986 at
Cambridge MA, under the direction of the Ada Validation Facility (AVF),
according to Ada Validation Organization (AVO) policies and procedures.
The AVF identified 1945 of the 2399 tests in ACVC Version 1.8 to be
prooessed during on-site testing of the compiler. The 19 tests withdrawn

-,at the time of validation testing were not processed; the 278 Class C tests
that make use of floating-point precision exceeding that supported by the
implementation were not processed; and 157 Class C tests that require the
creation of external files were not processed. After the 1945 tests were
processed, results for Class A, C, D, or B tests were examined for correct
exeoution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and link
results of Class L tests Were analyzed for correct detection of errors.
There were 33 of the processed tests determined to be inapplicable. The
remaining 1912 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL

_ _ _ _ __. __ _ !_ 10 11 12 14

Passed 93 204 280 235 159 97 134 262 128 32 218 70 1912

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 121 140 12 2 0 5 0 2 0 0 163 468

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/I4IL-STD-1815A Ada.

*Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

II P I, .II I I

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTIOI

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1- 3
1.4 DEFINITION OFTERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS * 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS o. . . o... 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPRNDIX A COMPLIANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

- This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs.-The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:'

- To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

• To attempt to identify any unsupported language constructs
required by the Ada Standard

" To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
24 October 1986 through 29 October 1986 at Cambridge MA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided In accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures, MITRE
Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Impleenters' Guide, SofTech,
Inc., DEC 1984I.

1.1 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD- 1815A.

Ada Standard kNSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

il l "L

INTRODUCTION

Inapplicable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
tt'e test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

INTRODUCTION

permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If i Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECK FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1-5

I1

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: 1750A Ada Real-Time Compiler, Version 201.16c

ACVC Version: 1.8

Certificate Expiration Date- 16 December 1987

Host Computer:

Machine: VAX-11/785

Operating System: VMS, Version 4.2

Memory Size: 16 megabytes

Target Computer:

Machine: ECSPO SIM5OA, Version R0304-4.000

Operating System: None

Memory Size: 65536 words

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implemdntations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following
interpretations of the Ada Standard:

. Capacities.

The compiler correctly processes tests containing loop statements
nested to 17 levels and recursive procedures separately compiled
as subunits nested to 6 levels. The compiler could not process
block statements nested to 65 levels. It correctly processes a
compilation containing 723 variables in the same declarative part.
(See tests D55AO3A..H (8 tests), D56001B, D64005E..G (3 tests),
and D29002K.)

. Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4AOO2A, D4AOO2B, D4AOO4A, and
DMAOOMB.)

Predefined types.

This implementation does not support additional predefined types
in the package STANDARD. (See tests B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E241O1A.)

* Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAX INT.

2-2

CONFIGURATION INFORMATION

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER' LAST
raises NUMERIC ERROR when the array type is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array type is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. This implementation raises NUMERIC-ERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional and two-dimensional array types, the
expression does not appear to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the expression's
subtype is compatible with the target's subtype. (See test
C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype indications. (See test
E38104A.)

In assigning record types with discriminants, the expression does
not appear to be evaluated in its entirety before CONSTRAINT-ERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E13212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3

CONFIGURATION INFORMATION

" Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profiie in the
same immediate scope, or it may reject the function declaration.
If it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

" Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation rejects 'SIZE and 'STORAGE SIZE for tasks,
'STORAGE SIZE for collections, 'SMALL clauses, and enumeration
representation clauses. (See tests C55B16A, C87B62A, C87B62B,
C87B62C, and BC1002A.)

. Pragmas.

The pragna INLINE is supported for procedures and for functions.
(See tests CA3004E and CA3004F.)

* Input/output.

This implementation supports only the package TEXT 10 for file
operations on STANDARD INPUT and STANDARD-OUTPUT.

The package SEQUENTIAL IO cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. The package DIRECT 10 cannot be instantiated
with unconstrained array types and record types with discriminant
without defaults. (See tests AE2101C, AE2101H, CE2201D, CE2201E,
and CE2iIO1D.)

" Generics.

Body and subunits of a generic unit must be in the same
compilation as the specification if instantiations precede them.
(See tests CA2009C and CA2009F.)

2-4

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
1750A Ada Real-Time Compiler was performed, 19 tests had been withdrawn.
The remaining 2380 tests were potentially applicable to this validation.
The AVF determined that 468 tests were inapplicable to this implementation,
and that the 1912 applicable tests were passed by the implementation.

The AVF ooncludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 67 862 915 10 12 46 1912

Failed 0 0 0 0 0 0 0

Inapplicable 2 5 453 7 1 0 468

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

(YU 1 **

TEST INFORMATION

3.3 SUMOARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

Passed 93 204 280 235 159 97 134 262 128 32 218 70 1912

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 121 140 12 2 0 5 0 2 0 0 163 468

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 2117 161 98 140 264 131 32 219 233 2399

3.11 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C321141A C14 04A B74I101B
B33203C B45116A C87B5OA
C34018A C48008A C92005A
C35904A B19006A C94OACA
B37401A B4AO1OC CA3005A..D (4 tests)

BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 468 tests were inapplicable for
the reasons indicateds

" C3I001D, B52004g, B55BO9D, and C55BO7B use SHORT INTEGER which is
not supported by this compiler.

" C31001E, B52004D, B55B09C, and C55807A use LONG INTEGER which is
not supported by this compiler.

" C34001F and C35702A use SHORT FLOAT which is not supported by this
compiler.

3-2

TEST INFORMATION

- C34001G and C35702B use LONG-FLOAT which is not supported by this
compiler.

• C55B16A makes use of an enumeration representation ' clause
containing noncontiguous values which is not supported by this
compiler.

• D55AO3E..H (4 tests) contain loops nested to 31 or more levels
which exceed the supported maximum of 24 nested loops.

- D56001B contains blocks nested to 65 levels which exceed the
compiler's capacity.

" D64005F and D64005G make use of nested procedures as subunits to a
level of 10. These tests compile and link correctly, but result
in STORAGE-ERROR being raised during execution.

" B86001D requires a predefined numeric type other than those
defined by the Ada language in package STANDARD. There is no such
type for this implementation.

. C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT_1O.

. C87B62A..C (3 tests) use length clauses which are not supported by
this compiler. The length clauses are rejected during
compilation.

• CA2009C and CA2009F compile the body and subunits of a generic
unit in separate compilation files. Separate compilation of
generic specifications and bodies is not supported by this
compiler unless instantiations follow compilation of the
corresponding body.

" AE2101C, CE2201D, and CE2201E use an instantiation of package
SEQUENTIAL 10 with unconstrained array types which is not
supported by this compiler.

• AE2101H and CE2401D use an instantiation of package DIRECT 10 with
unconstrained array types which is not supported by this compiler.

. The following 278 tests require a floating-point accuracy that
exceeds the maximum of 6 supported by the implementation:

C24113C..Y (23 tests) C35708C..Y (23 tests) C45421C..Y (23 tests)
C35705C..Y (23 tests) C35802C..Y (23 tests) C45424C..Y (23 tests-)
C35706C..Y (23 tests) C45241C..Y (23 tests) C45521C..Z (24 tests)
C35707C..Y (23 tests) C45321C..Y (23 tests) C45621C..Z (24 tests)

3-3

TEST INFORMATION

The following 158 tests require the use of external files. This
implementation supports only the files STANDARD-INPUT and
STANDARD-OUTPUT:

CE2104A..D (4 tests) CE3108A..B (2 tests) CE3413A
CE2105A CE3109A CE3413C
CE2106A CE3110A CE3602A..D (4 tests)
CE2107A..F (6 tests) CE3111A..E (5 tests) CE3603A
CE2108A..D (4 tests) CE3112A..B (2 tests) CE3604A
CE2109A CE3114A..B (2 tests) CE3605A..E (5 tests)
CE211OA..C (3 tests) CE3115A CE3606A..B (2 tests)
CE2111A..E (5 tests) CE3203A CE3704A..B (2 tests)
CE2111G..H (2 tests) CE3208A CE3704D..F (3 tests)
CE2201A..C (3 tests) CE3301A..C (3 tests) CE37014..O (3 tests)
CE2201F CE3302A CE3706D
CE2204A..B (2 tests) CB3305A CE3706F
CE2210A CE3402A..D (4 tests) CE3804A..E (5 tests)
CE24O1A..C (3 tests) CEB403A..C (3 tests) CE3804G
CE2401E..F (2 tests) CE3403E..F (2 tests) CE3804I
CE24O#A..B (2 tests) CE3404A..C (3 tests) CE3804K
CE2406A CE3405A..D (4 tests) CE38044
CE2407A CE306A..D (4 tests) CEB38O5A..B (2 tests)
CE248OA CE340TA..C (3 tests) C93806A
CE2409A CE3IO8A..C (3 tests) CE3806D..E (2 tests)
CE2410A CE3409A CE3905A..C (3 tests)
CE3102B CE34O9C..F (4 tests) CE3905L
E3102C CE3410A CE3906A..C (3 tests)
CE3103A CE3I1OC.,F (4 tests) CE3906E..F (2 tests)
CE3104A CE3411A
CE3107A CE3412A

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its sim is split into a set of smaller subtests that can be
processed.

Splits were required for two Class B tests, BA1101C and BC3205D.

3-4

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7. 1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the 1750A Ada Real-Time Compiler was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the 1750A Ada Real-Time Compiler using ACVC Version 1.8 was
conducted on-site by a validation team from the AVF. The configuration
consisted of a VAX-11/785 host operating under VMS, Version 4.2, and an
ECSPO SIM5OA, Release RO304-4.O00 target having no operating system and
executing on the VAX. The ECSPO SIM5OA simulates a MIL-STD-1750A
Instruction Set Architecture with console I/O and no other optional
features. Two identical VAX configurations were used for testing.

A magnetic tape containing all tests except for the 19 withdrawn tests, 278
tests requiring unsupported floating-point precisions, and 157 tests
requiring the creation or opening of external files was taken on-site by
the validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled using the two identical host configurations in a single batch
strem on each, and all executable tests were linked and run on the ECSPO
SIM5OA. Results were printed from the VAX.

The compiler was tested using command scripts provided by Intermetrics,
Inc. and reviewed by the validation tea. Each test was run using a
progrm library that contained only library units defined by the Ada
Standard, the package REPORT, and the procedure CHECK-FILE. All tests were
processed with the compiler's default options in effect except the Class B
tests for which processing was terminated following the semantics phase
(Stopafter 2> SEM). All tests were linked with the linker's default
options in effect. All applicable executable tests were run using a
default execution stack size of 1000 (hexadecimal) words, except for test
D640050 for which a stack size of 3000 (hexadecimal) was used.

Test output, compilation listings, and job logs were captured on magnetic
tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-5

TEST INFORHATION

3.7.3 Test Site

The validation team arrived at Cambridge HA on 241 October 1986, and
departed after testing was completed on 29 October 1986. The computers
used for testing were not dedicated to the testing effort.

3-6

APPENDIX A

COMPLIANCE STATEMENT

Intermetrios, Inc. has submitted the following
compliance statement concerning the 1750A Ada Real-Time
Compiler.

A-1

ii

COMPLIANC3 STATEMBNT

Compliance Statement

Configuration:

Compiler: 1750A Ada Real-Time Compiler, Version 201.16o

Test Suite: AdaCompiler Validation Capability, Version 1.8

Host Computer:

Machine: VAX-11/785

Operating System: VMS, Version 4.2

Target Computer:

Machine: SCSPO SIN5OA, Release R0304-4.000

Operating System: None

Intermetrics, Inc. has made no deliberate extensions to the Ada language

standard.

IntermetriCs, Inc. agrees to the public disclosure of this report.

Intermetrios, Inc. agrees to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office.

Ifitermetrics, Inc.
Dennis D. Struble
Ada Compilers Manager

eAda is a registered trademark of the United States Government

(Ada Joint Program Office).

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent characteristics of
the 1750A Ada Real-Time Compiler, Version 201.16c, are described in the
following sections which discuss topics in Appendix F of the Ada Language
Reference Manual (ANSI/MIL-STD-1815A). The specification of the package
STANDARD is also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;

type FLOAT is digits 6 range -2#1.0#e327
2#0°111111111111111111l11l1#el27;

type DURATION is delta 2.0 * (-14) range -86400.0 86400.0;

-- DURATION'SMALL = 2.0 0 (-14)

o..

end STANDARD;

B-1

Appendix F. IMPLEMENTATION DEPENDENCI ES

This section constitutes Appendix F of the Ada LRM , for thio
implementation. Appendix F from the LRM states:

The Ada language allows for certain machine-dependencies in a controlli
manner. No machine-dependent syntax or semantic extensions or restricion,;
are allowed. The only allowed implementation-dependencies correspond t(o
implementation-dependent pragmas and attributes, certain machine-,lepedri
conventions as mentioned in Chapter 13, and certain allowed restrictior.s ,
representation clauses.

The reference manual of each Ada implementation must include an appCr/,.,"
(called Appendix F) that describes all implementation-dependen/
characteristics. The Appendix F for a given implementation must UsL I,,.
particular:

1. The form, allowed places, and effect of every implementation-deendl
pragma.

2. The name and the type of every implementation-dependent attribute.

S. The specification of the package SYSTEM (see 19.7).

4. The list of all restrictions on representation clauses (see 19.1).

5. The conventions used for any implementation-generated name denohIIf,
implementation-dependent components (see 19.4).

6. The interpretation of expressions that appear in addre.q.s claur.r.q.
including those for interrupts (see 19.5).

7. Any restriction on unchecked conversions (see 13.10.2).

8. Any implementation-dependent characteristics of the input-oulplI
package. (see 14).

In addition, the present section will describe the following topics:
9. Any implementation-dependent rules for termination of t.i.qk-

dependent on library packages (see 9.4:13).

10. Other implementation dependencies.

11. Compiler capacity limitations.

B
d

"i " B-2

F.I Pragmas

This section describes the form, allowed places, and effect' or evf,-..
implementation-dependent pragma.

F.1.1 Pragmas LIST, OPTIMIZE, PAGE, PRIORITY

Pragmas LIST, OPTIMIZE, and PAGE are ignored. Pragma PRIORITY is
supported exactly in the form, in the allowed places, and with the effect im
described in the LRM.

F.1.2 Ptagma SUPPRESS

Form: As specified in LRM B(14) : SUPPRESS

Allowed Place: As specified in LRM B(14) : SUPPRESS

Effect: Pragma SUPPRESS is ignored.

F.1.3 Pragma INLINE

Form: Pragma INLINE (SubprogramNameCommaList)

Allowed Places: As specified in LRM B(4) : INLINE

Effect: If the subprogram body is available, and the subprogram is nol.
recursive, the code is expanded In-line at every call site and is subject
to all optimizations.

The stack-frame needed for the elaboration of the inline subprograi,
will be allocated as a temporary in the frame of the containing code.

Parameters will be passed properly, by value or by reference, as ror
non-inline subprograms. Register-saving and the like will be
suppressed. Parameters may be stored in the local stack-fratie or held
in registers, as global code generation allows.

Exception-handlers for the INLINE subprogram will be haidlPd nu rf,,-
block-statements.

Use: This pragma is used either when it is believed that the time required,
for a call to the specified routine will in general be excessive (this ror
frequently called subprograms) or when the average expected size or
expanded code is thought to be comparable to that of a call.

F.-14 Pragma INTERFACE

Form: Pragma INTERFACE (language-name, subprogram.natie)
where the languagejname must be an enumeration value of the typ'

B-3

SYSTEM.Supported.-L anguageName (see Package SYSTEM be tow).

Allowed Place: As specified in LRM B(S) : INTERFACE.

Effect. Specifies that a subprogram will be provided outside the Ada progri ,,
library and will be callable with a specified caling interface. Neither ato
Ada body nor an Ada body-jtub may be provided for a subprograiii
for which INTERFACE has been specified.

Use: Use with a subprogram being provided via another prograInzity.
language and for which no body will be given in any Ada program.
See also the LINK-NAME pragma.

The calling conventions for an Ada program calling a non-Ad:n
subprogram are described In the Run-Time Model B-5.

F.1.5 Ptagma LINKNAME

Form: Pragma LINK-NAME (subprogram..name, link-name)

Allowed Places: As specified in LRM B(S) for pragma INTERFACE.

Effect: Associates with subprogram subprogramnname the name link-name :,
its entry point name.

Syntax: The value of link.name must be a character string literal.

Use: To allow Ada programs, with help from INTERFACE pragina. i,
reference non-Ada subprograms. Also allows non-Ada progr.iri, ,,
call specified Ada subprograms.

F.1.6 Pragma CONTROLLED

Form: Pragma CONTROLLED (AcceasTypeName)

Allowed Places: As specified In LRM B(2) : CONTROLLED.

Effect. Ensures that heap objects are not automatically reclaimed. Siti. ,,,.
automatic garbage collection is provided, this pragma curremitly l,-ns i,

effect.

F.1.7 Pragma PACK

Form: Pragma PACK (type-simple.rane)

Allowed Place: As specified in LRM 13.1(12)

Effect: Components are allowed their minimal number of storage imils :n,

provided for by their own representation and/or packing.

B-4

Use: Pragma PACK is used to reduce storage size. This can allow r'rcrnk
and arrays, in some cases, to be passed by value instend 0o1 lIv
re ferenace.

Size reduction usually implies an increased cost of nedsfiii-I
components. The decrease in storage size may be offset by igcrPe.se mi

size of accessing code and by slowing of accessing operations.

F.1.8 Pro gmas SYSTEM-NAME, STORAGE-UNIT,
MEMORYSIZE

Th~ese pragmas are not supported and are ignored.

B-5

p - - p

F.2 I mplementation- dependent Attributes

This section describes the name and the type of every impleqientatiowi
dependent attribute.

There are no implementation defined attributes. These are tbe values ror
certain language-defined, implementation-dependent attributes:

Type INTEGER.
INTEGER'SIZE -16 -- bits.
INTEGER'FIRST -. (2*015) .. - 32,768
INTEGER'LAST - (2--15.1) -- 32,707

Type FLOAT.
FLOAT'SIZE -32 -- bits.
FLOAT'DIGITS -6

FLOAT'MANTISSA - 21
FLOAT'EMX - 64
FLOAT'EPSILON - 2.04*(-20)
FLOAT'SM&LL - 2.00*(-S5)
FLOAT'LARGE - (2 .0**84)*(1.0-2 .0--(21))
FLOAT'MCHINE-.ROUNDS M falls
FLOAT'MACHINE..RADIX -2

FLOAT'MACHINE.MA.NTISSA - 24
FLOAT'MACHINE-E.UAX - 127
FLOAT'MACHINE-EM~IN -128
FLOAT'MACHINE-.OVERFLOWS - true
FLOAT'SAFE..EMAX 127
FLOAT'SAFE-SAL - 2#0.OOO00ooOOOOO0oooooooooi.tl: ' -**
FLOAT' SAFE-.LAROE - 20111 i1111 I ~. '

Type DURATION.
DURATION'DELTA M 2.0*0(.i4) seconds
DURATION'FIRST - .86,400.0 seconds
DURATION'LAST = 86,400.0 seconds
DURATION'SMALL = 2.00*(.14)

Type PRIORITY.
PRIORITY'FIRST - -127
PRIORITY'LAST - 127

B-6

L.,

F.3 Package SYSTEM

package SYSTEf Is

type ADDRESS Is private; -- 'i-', "/= defined implicltly:

type NAME is (UTS, MVS, C4S, PrImeS50, Sperryll00,
MILSID_1750A);

SYSTEM-NAME constant NAME :-=MILSTD_17SOA;

STORAGE-UNIT constant :- 16;

M[EMORYSIZE constant :- 20016;

In storage units

-- System-Dependent Named Numbers:

MININT : constant :- INTEGER'POS(INTEGER'FIRST);

MAXINT : constant INTEGER'POS(INTEGER'LAST);

MAX-DIGITS : constant :0;
MAX-,MANTISSA : constant :- 31;

FINE.DELTA : constant :m 2.0''(-31);

TICK : constant := 0.0001;

.. Other Systed-Dependent Declarations

subtype PRIORITY is INTEGER range -127..127;

' o~o.............. o.............. o....... --

". Implementation-dependent additions to package SYSTI,/ --

I~. aaeoeeoo se e .. s...-

NULL-ADDRESS : constant ADDRERSS;

Same bit pattern as 'null' access value
-- This is the value of 'ADDRESS ror Ilined **loooi,,-

The 'ADDRESS of any object which occup!.% stot,:,',.

is NOT equal to this value.

ADDRESS-SIZE : constant :- 16;

Number of bits in ADDRESS objects, = AUL)IIASS'SII.
but static.

type ADDRESS-OFFSET is new INTEGER;
.. Used for address arithmetic

type ADDRESSSEGMENT is new INTEGER;

B-7

11~~~, . ., 1 1

Always Seto on targets wi th
unsegmented address space.

subtype NORMLIZED..ADDRESS-.OFFSET is
ADDRE S S-.OFFSET;

.Range of address offsets returned by OFFSET.Ol

function *+*(addr : ADDRESS; offset : ADDRESS-O.FFSET)
return ADDRESS;

function *+*(offset :ADDRESS-..OFFSET; addr :ADDRESS)
ro erm ADDRESS;

-Provide addition between addresses and
offsets. May cross segment boundaries on tarav'Q
where objects may span segments.

-On other targets, CONSTRAINT-.ERROR will he rai-.,l
-- when OFFSET-.OF(addr) + offset not in
-- NORALIZED-.ADDRESS..OFFSET.

function *-'(left, right : ADDRESS) return ADDRESS-.OFFSET:;
-May exceed SEQMNT..SIZE on targets where objeckm
-- may span Segments.

-On other targets, CONSTRAINT-.ERROR
-. will be raised if
-. SEGMENT-.OF(left) /mSEGIENT-.OF(right).

function *'(addr : ADDRESS; offset :ADDRESS-.OFFSET) repigrso

ADDRESS;
-Provide subtraction of addresses and ofrsets.
-May Cross segment boundaries on targets where
-- objects may span segments.

-On other targets, CONSTRAINT-.ERROR will be rais-.I
-- when (OFFSET-.OF(addr) - offset) not in
-- NORMAL IZED...ADDRESS..OFFSET.

funct ion OFFSET-..OF (addr :ADDRESS)
return NORMAL IZED..ADDRESS-.OFFSET;

-Extract offset part of ADDRESS
-Always Is range 0. .seg-.sise - 1

function SEQC4ENT-.OP (adde ADDR.RR)
return ADDRESS-.SEGMENT;

-Extract segment part or ADDRESS
-(sero on targets with unsegmented address sparo)

function MAKE-.ADDRESS (offset :ADDRESS-.OFFSET;
segment :ADDRESS-.SEMENT ~u0)

B-8

",bb"

return ADDRESS;
-'build address given offset and segment.

Offset may be > log-.. sz on targets where
objects may *pan segments, In which case it iq

-. equivalent to 'NEMAJE.ADDRESS(O. segmeunt) +of o-i-.

On other targets, CONSTRAINT-.ERROR will be rai--I
-. when offset not In NORMAL IZED-.ADDRESS.-OFFS ET.

type Supported-.Language..Name is (-- Target dependent
.. The following are *foreign' languages:

AIE-ASSEMBLER, -- NOT a 'foreign* language -uses AIlU I'
UNSPECIFIJED-.LANGUAGE

Most/least accurate built-in
- - Integer and float types

subtype LONGEST-INTEGER is STANDARD.INTEGER;
subtype SHORTEST-.INTEGER Is STANDARD.INTEGER;

subtype LONGEST-..FLOAT is STANDARD.FLOAT;
subtype SHORTEST-.FLOAT is STANDARD.FLOAT;

private

type ADDRESS Is access INTEGER;
Note: The designated type here (INTEGER) is

irrelevant. ADDRESS is made an access typ*-
simply to guarantee it has the sauie siu..

-. as access values, which are single addr~eq-
-. Allocators of type ADDRESS are NOT mesniit%0-t

NULL-.ADDRESS :constant ADDRESS :-null;

end SYSTEM

B-9

F.4 Representation Clauses
This section describes the list of all restrictions on representation claiis.-t.

"NOTE: An implementatin may limit its acceptance of repreaentutiorg clauses Ito
those that can be handled simply by the underlying hardware.... If a pro gre' '
contains a representation clause that if not accepted [by the compilcr/, then the'
pro gram is ilegal." (LRM 13.1(10)).

There are no restrictions except so follows:

a. Length clauses are not allowed.

b. Representation clauses for enumeration types are not allowed.

c. Address clauses ame not allowed.

d. Record-representation-clause:

Within a record- representation-clause, the object being represented usi.
be no larger than one 16-bit word.

The range of bits specified must be in the range of 0-.15.

Record components, Including those generated Implicitly by the compiler.
whose locations are not &.*ven by the representation-clause, are layed 4,111
by the compiler following all the components whose locations are giveii Ioy
the representation-clause. Such components of the invariant part of t.hv
record are allocated to follow the user-specified components of thI-
invariant part, and such components in any given variant part are
allocated to follow the user-specified components of that variant part.

B- 10

F.5 Implementation-dependent Components

This section' describes the conventions used for any impleyientation-
generated name denoting implementation-dependent components.

There are no Implementation-generated names denoting implementation-
dependent (record) components, although there are, indeed, such cotnponeitl.R.
Hence, there Is no convention (or possibility) of naming them and, therefore.
no way to offer a representation clause for such components.

NOTE: Records containing dynamic-sized components will contain (generally)
unnamed offset components which will "point" to the dynwnic-,izc,
components stored later in the record. AIMS/1750 offers no means to specify
the representation of such components.

B-11

F.6 Address Clauses

This section describes the interpretation of expressions that appear i
address clauses, including those for interrupts.

Address clauses are not allowed.

B- 12

iX mu

F-7 Unchecked Conversions

This section describes any restrictions On unchecked conversions.

The source and target values must both be of an integer, enumeration, or
access type.

B- 13

F.8 Input.Output

This section describes implementation-dependent characteristics or ii.,,
input-output packages.

The 1750A is assumed to operate without an operating system and withow
other external I/O devices than the console device which supports text..o rr
STANDARD-INPUT and STANDARDOUTPUT. The predefined cxcvplihi
USE-ERROR will be raised if an attempt is made to open any external file or
use the console for other than textjo.
(a) Where are I/O exceptions raised beyond what is described in Chapter 1i

[14.1(11)1 None.

(b) What are the standard input and standard output files? [14.3(5)1
These files both map onto the 1750A console device.

(c) What are the forms of line terminators and page terminators? 114.3(7)1
Line terminator is ASCII.LF (line feed);
Page terminator is ASCII.FF (form feed)

(d) Effect of instantiating ENUMERATION-JO for an integer type?
[14.3.9(15)j

The instantiated Put will work properly, but the instantiated (Ct
will raise DataError

(e) Specification of package Low..LevelIO? [14.61
Low-Level-IO is not provided.

B- 14

F.9 Tasking

This section describes implementation-dependent chaacteristics or ow,,.
tasking run-time packages.

Even though a main program completes and terminates (its dlpqtiIdIII
tasks, it any, having terminated), the elaboration of the program as a wiwl.
continues until each task dependent upon a library unit package has either
terminated or reached an open terminate alternative. See LRM 9.4(13).

B-15

F.10 Other Matters

This section describes other implementation-dependent characteristics a,
the system.

a. Restrictions on SHARED variables (LRM 9.11):
Must be of a scalar or access type.

b. Package Machine-Code
Will not be provided.

c. Order of compilation of generic bodies and subunits (LRM 10.3:0):
Body and subunits of generic must be in the same compilatiou n.q
the specification if instantiations precede them (see Al-
00257/02).

_1

= B- 16

F.11 Compiler Limitations

(a) Maximum length of source line?
255 characters.

(b) Maximum number of "use" scopes?
Limit is 50, set arbitrarily by SEMANTICS as maximum number
of distinct packages actively "used."

(c) Maximum length of identifier?
255 characters.

(d) Maximum number of nested loops?
24 nested loops.

B-17

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGID1 (1..254 a >'A', 255 > '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 (1..254 > 'A', 255 > '2')
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID3 (1..154 U> 'A', 155 > '3',
Identifier the size of the 156..255 > 'A')
maximum input line length with
varying middle character.

$BIG ID4 (1..154 0> 'A', 155 "> 's',
Identifier the size of the 156..255 > 'A')
maximum input line length with
varying middle character.

$BIO INT LIT (1..252 > '0', 253.•255 > 0298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIG REAL LIT (1..249 => '0',
A real literal that can be 250..255 = "69.0EI")
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1-•235 => '

A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNT LAST 32767
A universal integer literal
whose value is TEXT IO.COUNT'LAST.

$EXTENDEDASCIICHARS "abcdefghijlklmnopqrstuvwxyz" &
A string literal containing all "!$%?QC\]'{)"
the ASCII characters with
printable graphics that are not

in the basic 55 Ada character
set.

$FIELD LAST 32767
A universal integer literal
whose value is TEXT IO. FIELD'LAST.

$FILE NAME WITH. BAD CHARS NO-FILES
An illegal external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE NAME WITH WILD CARD CHAR NO- IL S
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$OREATERTHAN ,DURATION 90_000.0
A universal real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATERTHAN DURATION.BASE LAST 10000000.0
The universal real value that is
greater than DURATION'BASSILAST,
if such a value exists.

C-2

TEST PARAMETERS

Nae and Meaning Value

$ILLEGAL EXTERNAL FILE NAME1 NO FILES
An illegal external file name.

$ILLEGAL EXTERNAL_FILENAME2 NO-FILES
An illegal external file name
that is different from
$ILLEGAL EXTEIRNALFILE NAME 1.

$INTEGER FIRST -32768
The universal integer literal
expression whose value is
INTEGER' FIRST.

$INTEGER LAST 32767
The universal integer literal
expression whose value is
INTEGER' LAST.

$LESS THAN.DURATION -90_000.o
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESSTHAN DURATION BASE FIRST -10000000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX DIGITS 6
The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

$MAX IN LEN 255
The- universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAX INT 32767
The universal integer literal
whose value is SYSTEM.MAXNT.

C-3

TEST PARAMETERS

Name and Meaning Value

$NAME NO OTHER PREDEF NUM TYPE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT-FLOAT, SHORT-INTEGER,
LONG FLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEO BASED INT 8#177776#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM .MAXINT.

$NON ASCII CHAR TYPE (NON-MULL)
An enmera7ted type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCII
characters with printable
graphics.

C-I

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Comentary.

. C32114A: An unterminated string literal occurs at line 62.

. B33203C: The reserved word "IS" is misspelled at line 45.

* C34018A: The call of funation G at line 114 is ambiguous in the
presence of implicit conversions.

* C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC ERROR instead of CONSTRAINT ERROR as expected in
the test.

* B37410As The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

C41l04A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

945116A: AJRPRIBL1 and ARRPRIBL2 are initialized with a value of
the wrong type--PRIBOOL TYPE instead of ARRPRIBOOL TYPE--at line
41.

* C8008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

BJ9006A: Object declarations at lines 1 and 50 are terminated
incorrectly with colons, and end case; is missing from line 12.

B4AO1OCs The object declaration in line 18 follows a subprogram
body of the sie declarative part.

D-1

VITHDRAWN TESTS

" B711018: The pen at line 9 causes a declarative part to be
treated as a sequence of statements.

" C87BSOA: The call of "/am at line 31 requires a use clause for
package A.

* C92005A: The *ia" for type PACK.BII INT at line 40 is not visible
witheut a use clause for the paokag PACK.

• C94OACA: The assumption that allocated task TTI will run prior to
the main progrm, and thus assign SPYNUMB the value checked for by
the main progr m, is erroneous.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

" BC3204C: The body of BC3204C0 is missing.

D.2

* ..w ~@

